论文标题
$ p- $ laplacian的强壮型不平等和主要频率
Hardy-type inequalities and principle frequency of the $p-$Laplacian
论文作者
论文摘要
我们证明,对于任何域$ω\ subsetneq \ mathbb r^n $,涉及边界距离$δ$的尖锐的$ l^p $加权不平等。在$ - \logδ$是亚谐波的其他假设下,可能会大大改善不平等。这些不平等的应用在$ p- $ laplacian的主要频率上。
We prove a sharp $L^p$ weighted Hardy inequality involving boundary distance $δ$ for any domain $Ω\subsetneq \mathbb R^n$. The inequality may be improved substantially under the additional assumption that $-\log δ$ is subharmonic. Applications of these inequalities to the principle frequency of the $p-$Laplacian are given.