论文标题

个性化的面部建模,用于改进面部重建和运动重新定位

Personalized Face Modeling for Improved Face Reconstruction and Motion Retargeting

论文作者

Chaudhuri, Bindita, Vesdapunt, Noranart, Shapiro, Linda, Wang, Baoyuan

论文摘要

基于图像的3D面部重建和面部运动重新定位的传统方法适合3D形态模型(3DMM),该模型具有有限的建模能力,并且无法很好地推广到野外数据。使用变形转移或多线性张量作为融合插值的个性化3MM,并不能解决面部表情导致不同人的不同局部和全球皮肤变形的事实。此外,现有方法学习每个用户的单个反照率,这不足以捕获特定表达的皮肤反射率变化。我们提出了一个端到端框架,该框架从用户表达式的大型野外视频中共同学习每个用户的个性化面部模型和人均面部运动参数。具体而言,我们通过预测3DMM先验的个性化校正来学习特定于用户的表达搅拌器和动态(表达式)反照率图。我们介绍了新的限制,以确保校正后的混合形保留其语义含义,并且重建的几何形状与反照率分开。实验结果表明,我们的个性化准确地捕获了各种条件下的细粒面动力学,并有效地将学习的面部模型从面部运动中解脱出来,从而与最先进的方法相比,与最准确的面部重建和面部运动重新定位相比。

Traditional methods for image-based 3D face reconstruction and facial motion retargeting fit a 3D morphable model (3DMM) to the face, which has limited modeling capacity and fail to generalize well to in-the-wild data. Use of deformation transfer or multilinear tensor as a personalized 3DMM for blendshape interpolation does not address the fact that facial expressions result in different local and global skin deformations in different persons. Moreover, existing methods learn a single albedo per user which is not enough to capture the expression-specific skin reflectance variations. We propose an end-to-end framework that jointly learns a personalized face model per user and per-frame facial motion parameters from a large corpus of in-the-wild videos of user expressions. Specifically, we learn user-specific expression blendshapes and dynamic (expression-specific) albedo maps by predicting personalized corrections on top of a 3DMM prior. We introduce novel constraints to ensure that the corrected blendshapes retain their semantic meanings and the reconstructed geometry is disentangled from the albedo. Experimental results show that our personalization accurately captures fine-grained facial dynamics in a wide range of conditions and efficiently decouples the learned face model from facial motion, resulting in more accurate face reconstruction and facial motion retargeting compared to state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源