论文标题

从社交媒体图像的水位预测具有多任务排名方法

Water level prediction from social media images with a multi-task ranking approach

论文作者

Chaudhary, P., D'Aronco, S., Leitao, J. P., Schindler, K., Wegner, J. D.

论文摘要

洪水是最常见,灾难性的自然灾害之一,并影响了全球数百万人。重要的是要制作准确的洪水图来计划(离线)并进行(实时)减轻洪水和洪水救援行动。可以说,从社交媒体中收集的图像可以为该任务提供有用的信息,否则这将是不可用的。我们介绍了一个计算机视觉系统,该系统估算了在洪水事件期间拍摄的社交媒体图像的水深度,以便在实时(接近)实时建立洪水图。我们提出了一种多任务(深)学习方法,其中使用回归和成对排名损失训练模型。我们的方法是通过观察到的,即基于图像的洪水水平估计的主要瓶颈是训练数据:它很难,并且需要大量精力来注释具有正确水深的不受控制的图像。我们演示了如何从一小部分注释的水位和较大的弱注释中有效地学习预测因子,这些注释仅表示两个图像中的哪个图像更高,并且更容易获得。此外,我们提供了一个名为Deepflood的新数据集,具有8145个注释的地面图像,并表明所提出的多任务方法可以从单个人群中的单个图像中预测水位,该图像均具有〜11 cm root Square误差。

Floods are among the most frequent and catastrophic natural disasters and affect millions of people worldwide. It is important to create accurate flood maps to plan (offline) and conduct (real-time) flood mitigation and flood rescue operations. Arguably, images collected from social media can provide useful information for that task, which would otherwise be unavailable. We introduce a computer vision system that estimates water depth from social media images taken during flooding events, in order to build flood maps in (near) real-time. We propose a multi-task (deep) learning approach, where a model is trained using both a regression and a pairwise ranking loss. Our approach is motivated by the observation that a main bottleneck for image-based flood level estimation is training data: it is diffcult and requires a lot of effort to annotate uncontrolled images with the correct water depth. We demonstrate how to effciently learn a predictor from a small set of annotated water levels and a larger set of weaker annotations that only indicate in which of two images the water level is higher, and are much easier to obtain. Moreover, we provide a new dataset, named DeepFlood, with 8145 annotated ground-level images, and show that the proposed multi-task approach can predict the water level from a single, crowd-sourced image with ~11 cm root mean square error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源