论文标题
正交稀疏叠加代码,用于超级可靠的低延迟通信
Orthogonal Sparse Superposition Codes for Ultra-Reliable Low-Latency Communications
论文作者
论文摘要
本文介绍了一类新的稀疏叠加代码,用于添加白色高斯噪声通道上的低速和短包通信。新代码是正交稀疏叠加(OSS)代码。 OSS代码的代码字表示为稀疏子代码的叠加,其支撑集是相互非重叠的。要以计算有效的方式构造此类代码字,提出了连续的编码方法。提出了一种简单但近乎最佳的解码方法,利用子编号之间的正交特性,该方法执行元素最大的后验解码,并连续支撑集取消。该解码器在块长度上的线性解码复杂性非常快,远低于现代通道代码的商业通道解码器。块错误率(BLER)的上限是针对块长度和代码速率的函数分析得出的。事实证明,即使使用线性复杂性解码器,也可以在功率限制的方向上达到最终的香农限制。通过模拟,针对低率和短期通信方案的商业编码调制技术表明,所提出的OSS代码表现出更好的性能。
This paper presents a new class of sparse superposition codes for low-rates and short-packet communications over the additive white Gaussian noise channel. The new code is orthogonal sparse superposition (OSS) code. A codeword of OSS codes is represented as a superposition of sparse sub-codewords whose support sets are mutually non-overlapping. To construct such codewords in a computationally efficient manner, a successive encoding method is presented. Harnessing the orthogonal property among sub-codewords, a simple yet near-optimal decoding method is proposed, which performs element-wise maximum a posterior decoding with successive support set cancellation. This decoder is super-fast by a linear decoding complexity in block lengths, far less than the commercially used channel decoders for modern channel codes. The upper bounds for the block error rates (BLERs) are analytically derived for few-layered OSS codes as a function of block lengths and code rates. It turns out that a single-layered OSS code achieves the ultimate Shannon limit in the power-limited regime, even with the linear complexity decoder. Via simulations, the proposed OSS codes are shown to perform better than commercially used coded modulation techniques for low-rate and short-latency communication scenarios.