论文标题

Nirenberg圆锥形奇点的问题

The Nirenberg Problem for Conical Singularities

论文作者

Hernandez-Vazquez, Lisandra

论文摘要

我们提出了一种新的方法,即针对2个圆锥形的高斯曲率开出高斯曲率的问题,至少三个圆锥形奇异性和角度小于$2π$,主要的结果是班级的正功能至少是$ c^2 $的正常函数,以使其成为这种相结合的圆形圆锥体的高斯曲率。我们的方法与变异方法特别不同,因为它们不依赖于Moser-trudinger不平等。一路上,我们还证明了至少三个圆锥形奇异性和角度小于2 $π$的紧凑式Riemann表面的一般预发定理。

We propose a new approach to the question of prescribing Gaussian curvature on the 2-sphere with at least three conical singularities and angles less than $2π$, the main result being sufficient conditions for a positive function of class at least $C^2$ to be the Gaussian curvature of such a conformal conical metric on the round sphere. Our methods particularly differ from the variational approach in that they don't rely on the Moser-Trudinger inequality. Along the way, we also prove a general precompactness theorem for compact Riemann surfaces with at least three conical singularities and angles less than 2$π$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源