论文标题

通过功能模拟对肌肉骨骼控制的强化学习

Reinforcement Learning of Musculoskeletal Control from Functional Simulations

论文作者

Joos, Emanuel, Péan, Fabien, Goksel, Orcun

论文摘要

为了诊断,计划和治疗肌肉骨骼病理,了解和再现肌肉募集的复杂运动至关重要。随着运动的肌肉激活通常是高度冗余,非线性和时间依赖的,机器学习可以为其建模和控制解剖学特异性肌肉骨骼模拟提供解决方案。复杂的生物力学模拟通常需要专业的计算环境,在数值上复杂且缓慢,从而阻碍了它们与典型的深度学习框架的集成。在这项工作中,训练了基于深的增强学习(DRL)的逆动力控制器,以控制人肩部生物力学模型的肌肉激活。鉴于当前且期望的位置 - 速度对,以可概括的端到端方式学习。引入了用于轨迹控制的定制奖励功能,从而使额外的肌肉和更高的自由度直接扩展。使用生物力学模型,使用经过训练的DRL的不断发展的神经模型同时在群集上模拟了多个发作。为了遵循随机生成的角轨迹的任务,显示了对肩部外展的单轴运动控制的结果。

To diagnose, plan, and treat musculoskeletal pathologies, understanding and reproducing muscle recruitment for complex movements is essential. With muscle activations for movements often being highly redundant, nonlinear, and time dependent, machine learning can provide a solution for their modeling and control for anatomy-specific musculoskeletal simulations. Sophisticated biomechanical simulations often require specialized computational environments, being numerically complex and slow, hindering their integration with typical deep learning frameworks. In this work, a deep reinforcement learning (DRL) based inverse dynamics controller is trained to control muscle activations of a biomechanical model of the human shoulder. In a generalizable end-to-end fashion, muscle activations are learned given current and desired position-velocity pairs. A customized reward functions for trajectory control is introduced, enabling straightforward extension to additional muscles and higher degrees of freedom. Using the biomechanical model, multiple episodes are simulated on a cluster simultaneously using the evolving neural models of the DRL being trained. Results are presented for a single-axis motion control of shoulder abduction for the task of following randomly generated angular trajectories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源