论文标题

弯曲者的网络设计覆盖问题的分解

Benders decomposition for Network Design Covering Problems

论文作者

Bucarey, Víctor, Fortz, Bernard, González-Blanco, Natividad, Labbé, Martine, Mesa, Juan A.

论文摘要

我们考虑了两个网络设计问题的覆盖变体。我们将获得一组原点/目的地对,称为O/D对,如果网络中存在一个从原点到目的地的路径,则每个这样的O/D对都涵盖,其长度不大于给定阈值。在第一个问题(称为最大覆盖网络设计问题)中,必须确定一个网络,该网络最大程度地提高了对网络设计成本的预算限制,对所涵盖的O/D成对的总满足需求。在第二个问题(称为部分覆盖网络设计问题)中,设计成本将最小化,而下限设置为涵盖的总需求。提出配方后,我们开发了一种弯曲者分解方法来解决问题。此外,我们考虑了几种稳定方法来确定弯曲器的切割,以及在主问题中添加剪切不平等。我们还考虑在方法中添加初始解决方案的影响。计算实验显示了这些不同方面的效率。

We consider two covering variants of the network design problem. We are given a set of origin/destination pairs, called O/D pairs, and each such O/D pair is covered if there exists a path in the network from the origin to the destination whose length is not larger than a given threshold. In the first problem, called the Maximal Covering Network Design problem, one must determine a network that maximizes the total fulfilled demand of the covered O/D pairs subject to a budget constraint on the design costs of the network. In the second problem, called the Partial Covering Network Design problem, the design cost is minimized while a lower bound is set on the total demand covered. After presenting formulations, we develop a Benders decomposition approach to solve the problems. Further, we consider several stabilization methods to determine Benders cuts as well as the addition of cut-set inequalities to the master problem. We also consider the impact of adding an initial solution to our methods. Computational experiments show the efficiency of these different aspects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源