论文标题
为什么薄纸是派对结构的有效田间理论?
Why is LaMET an effective field theory for partonic structure?
论文作者
论文摘要
参与者是描述参与高能量碰撞的黑龙的结构的有效自由度。 Partons熟悉的理论是QCD轻率量化和软共线有效理论,它们本质上都是Minkowskian,并且似乎不适合经典的蒙特卡洛模拟。 Parton理论的``新''形式是根据老式的Feynman的无限动量框架提出的,其中Parton的自由度通过无限摩托车外部状态过滤。然后,Hadrons的党结构与状态$ | p^z = \ infty \ rangle $的静态(相等)相关器的矩阵元素有关。该表示形式奠定了大型摩肌有效理论(LAMET)的基础,该理论通过系统的$ m/p^z $扩展了Parton物理学,以有限但大动量$ p^z $扩展,但要删除残留的GoolgarithMic-P^z $ p^z $ dectionence-P^z $依赖,并删除标准的有效效果和运行。
Partons are effective degrees of freedom describing the structure of hadrons involved in high-energy collisions. Familiar theories of partons are QCD light-front quantization and soft-collinear effective theory, both of which are intrinsically Minkowskian and appear unsuitable for classical Monte Carlo simulations. A ``new'' form of the parton theory has been formulated in term of the old-fashioned, Feynman's infinite momentum frame, in which the parton degrees of freedom are filtered through infinite-momentum external states. The partonic structure of hadrons is then related to the matrix elements of static (equal-time) correlators in the state $|P^z=\infty\rangle$. This representation lays the foundation of large-momentum effective theory (LaMET) which approximates parton physics through a systematic $M/P^z$ expansion of the lattice QCD matrix elements at a finite but large momentum $P^z$, and removes the residual logarithmic-$P^z$ dependence by the standard effective-field-theory matching and running.