论文标题

从2D X光片中推断3D站立脊柱姿势

Inferring the 3D Standing Spine Posture from 2D Radiographs

论文作者

Bayat, Amirhossein, Sekuboyina, Anjany, Paetzold, Johannes C., Payer, Christian, Stern, Darko, Urschler, Martin, Kirschke, Jan S., Menze, Bjoern H.

论文摘要

退化性脊柱疾病的治疗需要了解3D中个体的脊柱解剖结构和曲率。在自然负轴承下的直立的脊柱姿势(即站立)对于这种生物力学分析至关重要。在躺下的患者中,进行了3​​D体积成像方式(例如CT和MRI)。另一方面,X光片以直立的姿势捕获,但导致2D投影。这项工作旨在集成两个领域,即,它结合了X光片的直立脊柱曲率与3D椎骨形状的CT成像结合在一起,以合成自然加载的直立的3D脊柱模型。具体来说,我们提出了一种新型的神经网络架构,以\ emph {transvert}为方面的椎骨,它具有正交2D X光片并渗透脊柱的3D姿势。我们在数字重建的X光片上验证了我们的体系结构,达到了$ 95.52 \%$的3D重建骰子,这表明几乎完美的2D到3D域翻译。在临床X光片上部署模型,我们首次成功合成了正直的,患者特定的脊柱模型。

The treatment of degenerative spinal disorders requires an understanding of the individual spinal anatomy and curvature in 3D. An upright spinal pose (i.e. standing) under natural weight bearing is crucial for such bio-mechanical analysis. 3D volumetric imaging modalities (e.g. CT and MRI) are performed in patients lying down. On the other hand, radiographs are captured in an upright pose, but result in 2D projections. This work aims to integrate the two realms, i.e. it combines the upright spinal curvature from radiographs with the 3D vertebral shape from CT imaging for synthesizing an upright 3D model of spine, loaded naturally. Specifically, we propose a novel neural network architecture working vertebra-wise, termed \emph{TransVert}, which takes orthogonal 2D radiographs and infers the spine's 3D posture. We validate our architecture on digitally reconstructed radiographs, achieving a 3D reconstruction Dice of $95.52\%$, indicating an almost perfect 2D-to-3D domain translation. Deploying our model on clinical radiographs, we successfully synthesise full-3D, upright, patient-specific spine models for the first time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源