论文标题

时间序列的统一机器学习方法预测适用于急诊部门的需求

A unified machine learning approach to time series forecasting applied to demand at emergency departments

论文作者

Vollmer, Michaela A. C., Glampson, Ben, Mellan, Thomas A., Mishra, Swapnil, Mercuri, Luca, Costello, Ceire, Klaber, Robert, Cooke, Graham, Flaxman, Seth, Bhatt, Samir

论文摘要

2019年,英格兰的急诊部门(EDS)有2560万人出席,对应于过去十年来增加1200万。 EDS的需求稳步上升会带来不断的挑战,以提供足够的护理质量,同时保持标准和生产力。有效地管理医院需求需要足够了解未来入院率。使用来自伦敦两家主要急诊医院的8年电子入院数据,我们开发了一种新颖的集成方法,结合了最佳性能时间序列和机器学习方法的结果,以便对需求进行高度准确的预测,即未来的1、3和7天。这两家医院的平均每日需求分别为208和106次出席,并且在这一平均值上经历了相当大的波动性。但是,我们的方法能够提前一天预测这些急诊室的出勤率,最高+/- 14和+/- 10患者的平均绝对误差分别为6.8%和8.6%。我们的分析将机器学习算法与更传统的线性模型进行了比较。我们发现,线性模型通常优于机器学习方法,并且我们对1、3或7天的预测视野中的预测质量均与MAE中测量相当。除了比较和结合预测医院需​​求的最先进的预测方法外,我们考虑了两种不同的高参数调谐方法,从而在不损害性能的情况下更快地部署了我们的模型。我们认为,我们的框架很容易被用来预测广泛的政策相关指标。

There were 25.6 million attendances at Emergency Departments (EDs) in England in 2019 corresponding to an increase of 12 million attendances over the past ten years. The steadily rising demand at EDs creates a constant challenge to provide adequate quality of care while maintaining standards and productivity. Managing hospital demand effectively requires an adequate knowledge of the future rate of admission. Using 8 years of electronic admissions data from two major acute care hospitals in London, we develop a novel ensemble methodology that combines the outcomes of the best performing time series and machine learning approaches in order to make highly accurate forecasts of demand, 1, 3 and 7 days in the future. Both hospitals face an average daily demand of 208 and 106 attendances respectively and experience considerable volatility around this mean. However, our approach is able to predict attendances at these emergency departments one day in advance up to a mean absolute error of +/- 14 and +/- 10 patients corresponding to a mean absolute percentage error of 6.8% and 8.6% respectively. Our analysis compares machine learning algorithms to more traditional linear models. We find that linear models often outperform machine learning methods and that the quality of our predictions for any of the forecasting horizons of 1, 3 or 7 days are comparable as measured in MAE. In addition to comparing and combining state-of-the-art forecasting methods to predict hospital demand, we consider two different hyperparameter tuning methods, enabling a faster deployment of our models without compromising performance. We believe our framework can readily be used to forecast a wide range of policy relevant indicators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源