论文标题

通过稳健低级表示的对抗性鲁棒性

Adversarial robustness via robust low rank representations

论文作者

Awasthi, Pranjal, Jain, Himanshu, Rawat, Ankit Singh, Vijayaraghavan, Aravindan

论文摘要

对抗性鲁棒性测量分类器对在测试时对输入的不可易于触发的敏感性。在这项工作中,我们强调了自然低排名表示的好处,这些表象通常存在于图像之类的真实数据,即具有认证稳定性保证的神经网络。 我们的第一个贡献是对以$ \ ell_2 $ norm进行测量的扰动认证的鲁棒性。我们利用低级数据表示形式,以优先于标准基准数据集(例如CIFAR-10和CIFAR-100)的最先进的基于随机平滑的方法提供改进的保证。 我们的第二个贡献是针对以$ \ ell_ \ infty $ norm衡量的扰动的更具挑战性的稳健性。我们从经验上证明,自然低级表示具有固有的鲁棒性属性,可以利用这些属性,以提供更好的保证,以确保$ \ ell_ \ ell_ \ elfty $ bisttertations在这些表示中的认证鲁棒性。我们的$ \ ell_ \ infty $ robustness的证书依赖于涉及与代表性相关的$ \ infty \ to 2 $矩阵运算符规范的自然数量,以将鲁棒性保证从$ \ ell_2 $转化为$ \ ell_2 $ to $ \ ell_ \ ell_ \ ell_ \ ell_ \ elfty $ pertturtations。 我们的认证保证的关键技术成分是一种快速算法,并基于乘法权重更新方法可证明保证,以提供上述矩阵规范的上限。我们的算法保证可以改善此问题的最新技术状况,并且可能具有独立的利益。

Adversarial robustness measures the susceptibility of a classifier to imperceptible perturbations made to the inputs at test time. In this work we highlight the benefits of natural low rank representations that often exist for real data such as images, for training neural networks with certified robustness guarantees. Our first contribution is for certified robustness to perturbations measured in $\ell_2$ norm. We exploit low rank data representations to provide improved guarantees over state-of-the-art randomized smoothing-based approaches on standard benchmark datasets such as CIFAR-10 and CIFAR-100. Our second contribution is for the more challenging setting of certified robustness to perturbations measured in $\ell_\infty$ norm. We demonstrate empirically that natural low rank representations have inherent robustness properties, that can be leveraged to provide significantly better guarantees for certified robustness to $\ell_\infty$ perturbations in those representations. Our certificate of $\ell_\infty$ robustness relies on a natural quantity involving the $\infty \to 2$ matrix operator norm associated with the representation, to translate robustness guarantees from $\ell_2$ to $\ell_\infty$ perturbations. A key technical ingredient for our certification guarantees is a fast algorithm with provable guarantees based on the multiplicative weights update method to provide upper bounds on the above matrix norm. Our algorithmic guarantees improve upon the state of the art for this problem, and may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源