论文标题

Biharmonic Hyperfaces领域的独特延续性属性

Unique Continuation Property for Biharmonic Hypersurfaces in Spheres

论文作者

Bibi, Hiba, Loubeau, Eric, Oniciuc, Cezar

论文摘要

我们研究球体非最小生物性超曲面的特性。主要结果是CMC独特的延续定理,用于球形的双旋转性超曲面。然后,我们推断出新的刚性定理,以支持猜想的欧几里得球体的Biharmonic Submanifolds必须具有恒定的平均曲率。

We study properties of non-minimal biharmonic hypersurfaces of spheres. The main result is a CMC Unique Continuation Theorem for biharmonic hypersurfaces of spheres. We then deduce new rigidity theorems to support the Conjecture that biharmonic submanifolds of Euclidean spheres must be of constant mean curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源