论文标题
Biharmonic Hyperfaces领域的独特延续性属性
Unique Continuation Property for Biharmonic Hypersurfaces in Spheres
论文作者
论文摘要
我们研究球体非最小生物性超曲面的特性。主要结果是CMC独特的延续定理,用于球形的双旋转性超曲面。然后,我们推断出新的刚性定理,以支持猜想的欧几里得球体的Biharmonic Submanifolds必须具有恒定的平均曲率。
We study properties of non-minimal biharmonic hypersurfaces of spheres. The main result is a CMC Unique Continuation Theorem for biharmonic hypersurfaces of spheres. We then deduce new rigidity theorems to support the Conjecture that biharmonic submanifolds of Euclidean spheres must be of constant mean curvature.