论文标题
随机固定点问题的随机函数迭代
Random Function Iterations for Stochastic Fixed Point Problems
论文作者
论文摘要
我们研究了随机函数迭代的收敛性,以查找相应的马尔可夫操作员的不变度量。我们称找到这种不变的量度测量随机固定点问题的问题。这概括了研究随机可行性问题的较早工作}即,找到概率1的点,是随机函数的固定点[Hermer,Luke,Sturm,2019]。当不存在这样的点时,随机可行性问题称为不一致,但仍在某些假设下,更通用的随机固定点问题具有解决方案,并且随机函数迭代会收敛到相应的Markov运算符的不变性度量。有两种主要类型的收敛类型:在随机可行性的情况下,迭代率几乎可以确保收敛到固定点,而分布的收敛性更高。我们展示了如何利用确定性固定点理论中的共同结构,以建立马尔可夫链的不变措施和收敛性的存在。我们表明,在马尔可夫链分析中,比通常遇到的假设弱保证线性/几何收敛。该框架专门针对当前兴趣的许多应用程序,包括用于大规模分布式计算的随机算法以及具有计算误差的确定性迭代过程。这项研究中开发的理论为描述简单计算方法的收敛提供了扎实的基础,而无需假设无限精确算术或消失的计算误差。
We study the convergence of random function iterations for finding an invariant measure of the corresponding Markov operator. We call the problem of finding such an invariant measure the stochastic fixed point problem. This generalizes earlier work studying the stochastic feasibility problem}, namely, to find points that are, with probability 1, fixed points of the random functions [Hermer, Luke, Sturm, 2019]. When no such points exist, the stochastic feasibility problem is called inconsistent, but still under certain assumptions, the more general stochastic fixed point problem has a solution and the random function iterations converge to an invariant measure for the corresponding Markov operator. There are two major types of convergence: almost sure convergence of the iterates to a fixed point in the case of stochastic feasibility, and convergence in distribution more generally. We show how common structures in deterministic fixed point theory can be exploited to establish existence of invariant measures and convergence of the Markov chain. We show that weaker assumptions than are usually encountered in the analysis of Markov chains guarantee linear/geometric convergence. This framework specializes to many applications of current interest including, for instance, stochastic algorithms for large-scale distributed computation, and deterministic iterative procedures with computational error. The theory developed in this study provides a solid basis for describing the convergence of simple computational methods without the assumption of infinite precision arithmetic or vanishing computational errors.