论文标题

不断学习的颜色和形状表示

Disentanglement of Color and Shape Representations for Continual Learning

论文作者

Berga, David, Masana, Marc, Van de Weijer, Joost

论文摘要

我们假设,灾难性遗忘造成的分离特征表示形式少遭受。作为一个案例研究,我们通过调整网络体系结构来执行颜色和形状的明确分离。我们使用Oxford-102 Flowers数据集测试了分类准确性并忘记了任务收入设置。我们将方法与弹性重量巩固相结合,学习而不忘记,突触智能和记忆意识突触,并证明特征分离会对持续的学习表现产生积极影响。

We hypothesize that disentangled feature representations suffer less from catastrophic forgetting. As a case study we perform explicit disentanglement of color and shape, by adjusting the network architecture. We tested classification accuracy and forgetting in a task-incremental setting with Oxford-102 Flowers dataset. We combine our method with Elastic Weight Consolidation, Learning without Forgetting, Synaptic Intelligence and Memory Aware Synapses, and show that feature disentanglement positively impacts continual learning performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源