论文标题
弗斯滕贝格措施的确切维度和Ledrappier-Young公式
Exact dimensionality and Ledrappier-Young formula for the Furstenberg measure
论文作者
论文摘要
假设有强大的不可约性和近端性,我们证明,Furstenberg度量与有限维度实际矢量空间的一般线性群的有限支持的度量相对应。我们还为其尺寸建立了Ledrappier-Young类型公式。证明的一般策略是基于冯给出的关于自我措施的确切维度的论点。
Assuming strong irreducibility and proximality, we prove that the Furstenberg measure, corresponding to a finitely supported measure on the general linear group of a finite dimensional real vector space, is exact dimensional. We also establish a Ledrappier-Young type formula for its dimension. The general strategy of the proof is based on the argument given by Feng for the exact dimensionality of self-affine measures.