论文标题
双教器:整合域内和域教师以进行注释效率的心脏分段
Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for Annotation-efficient Cardiac Segmentation
论文作者
论文摘要
医疗图像注释非常耗时,获得昂贵。为了减轻注释稀缺性,已经开发出许多方法来有效利用额外的信息,例如,半监督的学习进一步探索丰富的未标记数据,域适应性,包括多模式学习和无监督的领域适应性,以从其他模式中获取先验知识。在本文中,我们旨在调查同时利用丰富的未标记数据和良好成熟的跨模式数据的可行性,以进行注释有效的医学图像分割。为此,我们提出了一种新型的半监督域适应方法,即双学院,其中学生模型不仅从标记的目标数据(例如CT)中学习,而且还探索了两个教师模型的未标记的目标数据和标记的源数据(例如MR)。具体而言,学生模型通过鼓励预测一致性以及通过知识蒸馏嵌入了来自域内老师的标记源数据中的形状先验,从域内教师中了解了未标记的目标数据的知识。因此,学生模型可以有效利用所有三个数据资源中的信息,并全面整合它们以提高性能。我们对MM-WHS 2017数据集进行了广泛的实验,并证明我们的方法能够同时使用具有卓越性能的未标记数据和交叉模式数据,优于半监督的学习和域适应方法,并具有很大的余量。
Medical image annotations are prohibitively time-consuming and expensive to obtain. To alleviate annotation scarcity, many approaches have been developed to efficiently utilize extra information, e.g.,semi-supervised learning further exploring plentiful unlabeled data, domain adaptation including multi-modality learning and unsupervised domain adaptation resorting to the prior knowledge from additional modality. In this paper, we aim to investigate the feasibility of simultaneously leveraging abundant unlabeled data and well-established cross-modality data for annotation-efficient medical image segmentation. To this end, we propose a novel semi-supervised domain adaptation approach, namely Dual-Teacher, where the student model not only learns from labeled target data (e.g., CT), but also explores unlabeled target data and labeled source data (e.g., MR) by two teacher models. Specifically, the student model learns the knowledge of unlabeled target data from intra-domain teacher by encouraging prediction consistency, as well as the shape priors embedded in labeled source data from inter-domain teacher via knowledge distillation. Consequently, the student model can effectively exploit the information from all three data resources and comprehensively integrate them to achieve improved performance. We conduct extensive experiments on MM-WHS 2017 dataset and demonstrate that our approach is able to concurrently utilize unlabeled data and cross-modality data with superior performance, outperforming semi-supervised learning and domain adaptation methods with a large margin.