论文标题
传感器辅助学习用于Wi-Fi定位,并使用信标频道状态信息
Sensor-Aided Learning for Wi-Fi Positioning with Beacon Channel State Information
论文作者
论文摘要
由于每个室内站点都有自己的无线电传播特性,因此站点调查过程对于优化用于基于范围的定位解决方案的Wi-Fi范围策略至关重要。本文研究了一种无监督的学习技术,该技术使用用户使用定位应用程序的传感器数据自主研究周围环境的特征。使用收集的传感器数据,可以将设备轨迹重新生成,并训练Wi-Fi范围模块,以使用与传感器获得的Wi-Fi相似的Wi-Fi来制定估计轨迹的形状。在此过程中,范围模块学习了从每个Wi-Fi访问点(AP)识别通道条件的方法,并相应地产生范围的结果。此外,我们从信标框架中收集通道状态信息(CSI),并评估使用CSI以外的好处,此外还有接收信号强度(RSS)测量。当有CSI可用时,范围模块可以从每个AP中识别出更多样化的通道条件,从而可以实现更精确的定位结果。使用PC平台上实现的实时定位应用程序验证了提出的学习技术的有效性。
Because each indoor site has its own radio propagation characteristics, a site survey process is essential to optimize a Wi-Fi ranging strategy for range-based positioning solutions. This paper studies an unsupervised learning technique that autonomously investigates the characteristics of the surrounding environment using sensor data accumulated while users use a positioning application. Using the collected sensor data, the device trajectory can be regenerated, and a Wi-Fi ranging module is trained to make the shape of the estimated trajectory using Wi-Fi similar to that obtained from sensors. In this process, the ranging module learns the way to identify the channel conditions from each Wi-Fi access point (AP) and produce ranging results accordingly. Furthermore, we collect the channel state information (CSI) from beacon frames and evaluate the benefit of using CSI in addition to received signal strength (RSS) measurements. When CSI is available, the ranging module can identify more diverse channel conditions from each AP, and thus more precise positioning results can be achieved. The effectiveness of the proposed learning technique is verified using a real-time positioning application implemented on a PC platform.