论文标题

移动健康中的活动识别的转移学习

Transfer Learning for Activity Recognition in Mobile Health

论文作者

Ma, Yuchao, Campbell, Andrew T., Cook, Diane J., Lach, John, Patel, Shwetak N., Ploetz, Thomas, Sarrafzadeh, Majid, Spruijt-Metz, Donna, Ghasemzadeh, Hassan

论文摘要

虽然惯性传感器的活动识别具有移动健康的潜力,但传感平台和用户运动模式的差异会导致性能下降。为了应对这些挑战,我们建议转移学习框架,转移,以识别传感器的活动识别。 TransFall的设计包含一个两层数据转换,标签估计层和一个模型生成层,以识别新方案的活动。我们通过分析和经验来验证偏移。

While activity recognition from inertial sensors holds potential for mobile health, differences in sensing platforms and user movement patterns cause performance degradation. Aiming to address these challenges, we propose a transfer learning framework, TransFall, for sensor-based activity recognition. TransFall's design contains a two-tier data transformation, a label estimation layer, and a model generation layer to recognize activities for the new scenario. We validate TransFall analytically and empirically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源