论文标题

高度配对在较高的周期和混合霍奇结构上

Height Pairing on Higher Cycles and Mixed Hodge Structures

论文作者

Gil, J. I. Burgos, Goswami, S., Pearlstein, G.

论文摘要

为了获得光滑,投射的复杂品种,我们引入了与较高代数周期相关的几种混合霍奇结构。最值得注意的是,我们引入了一个混合的Hodge结构,用于一对较高的循环,该循环在精制的归一化络合物中并正确相交。在特殊情况下,这种混合的Hodge结构是定向的双重结构,其高度与前两位作者在上一篇论文中引入的较高的Archimedean高度配对一致。我们还计算了Bloch-Wigner Diologarithm函数给出的该高度的非平凡示例。最后,我们研究了Hodge-Tate类型的混合Hodge结构的变化,并表明高度连续延伸至退化情况。

For a smooth, projective complex variety, we introduce several mixed Hodge structures associated to higher algebraic cycles. Most notably, we introduce a mixed Hodge structure for a pair of higher cycles which are in the refined normalized complex and intersect properly. In a special case, this mixed Hodge structure is an oriented biextension, and its height agrees with the higher archimedean height pairing introduced in a previous paper by the first two authors. We also compute a non-trivial example of this height given by Bloch-Wigner dilogarithm function. Finally we study the variation of mixed Hodge structures of Hodge-Tate type, and show that the height extends continuously to degenerate situations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源