论文标题

量子参考框架和试验

Quantum reference frames and triality

论文作者

Smolin, Lee

论文摘要

在没有边界的背景独立理论中,可以在动态参考系统方面定义物理可观察物。但是,我在这里认为,可能有一种对称性将物理参考框架的自由度与其他相对于该框架进行测量的自由度。这种对称性表达了以下事实:参考框架的选择是任意的,但相同的定律适用于所有人,包括观察者和观察者。然后建议,在规范的描述中,这导致了天生二元性的扩展,该二元性将坐标和动量变量交换到将两者与时间参考框架混合在一起的试验性。这也可以通过将2N维符号几何形状扩展到d = 2n+1尺寸的几何形状来表达。时间参考框架的选择破坏了立方不变的二元性的试验,以规范两种形式表示。我们发现,一种非常优雅的方式来显示这种结构涵盖古典和量子力学的结构,它是基于立方动作的矩阵模型。在任何情况下,我们都会明确地看到自发对称性破坏如何导致时间参考框架的出现。

In a background independent theory without boundary, physical observables may be defined with respect to dynamical reference systems. However, I argue here that there may be a symmetry that exchanges the degrees of freedom of the physical frame of reference with the other degrees of freedom which are measured relative to that frame. This symmetry expresses the fact that the choice of frame of reference is arbitrary, but the same laws apply to all, including observer and observed. It is then suggested that, in a canonical description, this leads to an extension of the Born duality, which exchanges coordinate and momentum variables to a triality that mixes both with the temporal reference frame. This can also be expressed by extending 2n dimensional symplectic geometry to a d= 2n+1 dimensional geometry with a cubic invariant. The choice of a temporal reference frame breaks the triality of the cubic invariant to the duality represented by the canonical two form. We discover that a very elegant way to display this structure which encompasses both classical and quantum mechanics, is in terms of matrix models based on a cubic action. There we see explicitly in either case how a spontaneous symmetry breaking leads to the emergence of a temporal reference frame.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源