论文标题

基于复杂小波SSIM的图像数据增强

Complex Wavelet SSIM based Image Data Augmentation

论文作者

Raveendran, Ritin, Singh, Aviral, M, Rajesh Kumar

论文摘要

神经学习网络中最大的问题之一是缺乏可用于培训网络的培训数据。因此,在过去的几年中,数据增强技术已经开发出来,旨在增加人工培训数据的数量,而实际样本数量有限。在本文中,我们特别研究了用于数字识别的图像数据集的MNIST手写数据集,以及在此数据集中完成的数据增强方法。然后,我们详细研究用于此数据集弹性变形的最流行的增强技术之一。并强调了其在数据质量中退化的降解,这引入了与培训集无关的数据。为了降低这种不相关的情况,我们建议使用称为复杂小波结构相似性指数量度(CWSSIM)的相似性度量,以选择性地滤除无关数据的数据,然后再增加数据集。我们将观察结果与现有的增强技术进行了比较,发现我们提出的方法的工作比现有技术更好。

One of the biggest problems in neural learning networks is the lack of training data available to train the network. Data augmentation techniques over the past few years, have therefore been developed, aiming to increase the amount of artificial training data with the limited number of real world samples. In this paper, we look particularly at the MNIST handwritten dataset an image dataset used for digit recognition, and the methods of data augmentation done on this data set. We then take a detailed look into one of the most popular augmentation techniques used for this data set elastic deformation; and highlight its demerit of degradation in the quality of data, which introduces irrelevant data to the training set. To decrease this irrelevancy, we propose to use a similarity measure called Complex Wavelet Structural Similarity Index Measure (CWSSIM) to selectively filter out the irrelevant data before we augment the data set. We compare our observations with the existing augmentation technique and find our proposed method works yields better results than the existing technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源