论文标题
具有物理真空边界的相对论EULER方程:Hadamard局部适应性良好,粗糙解决方案和延续标准
The relativistic Euler equations with a physical vacuum boundary: Hadamard local well-posedness, rough solutions, and continuation criterion
论文作者
论文摘要
在本文中,我们为Minkowski背景上的物理真空边界提供了一个完整的本地适应性理论。具体而言,我们建立以下结果:(i)在哈玛德意义上的局部良好性,即局部存在,唯一性和对数据的持续依赖性; (ii)低规律性解决方案:我们的唯一性结果保持在Lipschitz速度和密度的水平,而我们的粗糙解决方案作为平滑溶液的独特限制获得的粗糙解决方案仅具有在缩放率上方的半导数。 (iii)稳定性:我们的独特性实际上是从更一般的结果中得出的,即,我们表明,某种非线性功能跟踪两个溶液之间的距离(部分通过测量其各自边界之间的距离)是由流量传播的; (iv)我们为解决方案建立了尖锐的,本质上是规模不变的能量估计; (v)在缩放层面上,一个急剧的延续标准,只要速度以$ l^1_t唇$为单位,并且密度合适的加权版本处于相同的规律性水平,则可以延续解决方案。 我们的整个方法是在欧拉(Eulerian)的坐标中,并依赖于与非相对论问题相对应的第二和第三作者的伴侣工作中开发的功能框架。我们所有的结果对于状态$ p(\ varrho)= \ varrho^γ$,$γ> 1 $的一般方程有效。
In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and continuous dependence on the data; (ii) low regularity solutions: our uniqueness result holds at the level of Lipschitz velocity and density, while our rough solutions, obtained as unique limits of smooth solutions, have regularity only a half derivative above scaling; (iii) stability: our uniqueness in fact follows from a more general result, namely, we show that a certain nonlinear functional that tracks the distance between two solutions (in part by measuring the distance between their respective boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale invariant energy estimates for solutions; (v) a sharp continuation criterion, at the level of scaling, showing that solutions can be continued as long as the the velocity is in $L^1_t Lip$ and a suitable weighted version of the density is at the same regularity level. Our entire approach is in Eulerian coordinates and relies on the functional framework developed in the companion work of the second and third authors corresponding to the non relativistic problem. All our results are valid for a general equation of state $p(\varrho)= \varrho^γ$, $γ> 1$.