论文标题

量子奇异振荡器的经典和统计极限

Classical and statistical limits of the quantum singular oscillator

论文作者

Silva, Caio Fernando e, Bernardini, Alex E.

论文摘要

量子奇异振荡器(SO)的经典边界是在Weyl-Wigner相位和Bohmian力学框架下解决的,以评估相对评估的相位空间和构型量子量子轨迹以及计算扭曲量子波动。对于恢复经典时间演变(在相位和配置空间)的纯正状态\ textit {quassi} -Gaussian Wigner函数,分析获得了Bohmian轨迹,以表明SO能量和鼻孔性参数如何通过所谓的量子力来驱动量子量的量子量,该量子量的量子量降低了量子,该量子的量子扭曲的行为,该量子的量身定量的行为,该量子的恢复性行为。将经典量词限制的讨论扩展到量子统计集合,计算热的Wigner函数和相应的Wigner电流,以显示温度依赖性如何影响局部量子波动。考虑到量子混合的水平是通过量子纯度量化的,因此信息损失是根据温度效应量化的。尽管具有对比鲜明的相空间流量曲线,但两个不相等的量子系统,即奇异和谐波振荡器,除了再现稳定的经典限制外,还显示出在热平衡上具有统计上等效的事实,这一事实将如此非线性的系统提高到非常特殊的量子系统类别。

The classical boundaries of the quantum singular oscillator (SO) is addressed under Weyl-Wigner phase-space and Bohmian mechanics frameworks as to comparatively evaluate phase-space and configuration space quantum trajectories as well as to compute distorting quantum fluctuations. For an engendered pure state \textit{quasi}-gaussian Wigner function that recovers the classical time evolution (at phase and configuration spaces), Bohmian trajectories are analytically obtained as to show how the SO energy and anharmonicity parameters drive the quantum regime through the so-called quantum force, which quantitatively distorts the recovered classical behavior. Extending the discussion of classical-quantum limits to a quantum statistical ensemble, the thermalized Wigner function and the corresponding Wigner currents are computed as to show how the temperature dependence affects the local quantum fluctuations. Considering that the level of quantum mixing is quantified by the quantum purity, the loss of information is quantified in terms of the temperature effects. Despite having contrasting phase-space flow profiles, two inequivalent quantum systems, namely the singular and the harmonic oscillators, besides reproducing stable classical limits, are shown to be statistically equivalent at thermal equilibrium, a fact that raises the SO non-linear system to a very particular category of quantum systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源