论文标题
新一代行星种群综合(NGPPS)。 ii。类似太阳能恒星的行星种群和统计结果概述
The New Generation Planetary Population Synthesis (NGPPS). II. Planetary population of solar-like stars and overview of statistical results
论文作者
论文摘要
我们想了解不同物理过程的全球可观察后果以及行星人口人口的初始特性。我们使用III代伯尔尼(III Bern)模型来执行行星种群综合。我们将五个种群与每个碟片的初始数量不同的月球胚胎数量:1、10、20、50和100。最后一个是我们的名义种群,围绕1个太阳质量恒星。只要每个系统中至少有10个胚胎,巨型行星的特性就不会变化太大。因此,可以通过模拟需要更少的计算资源来完成巨人的研究。对于内部陆地行星,只有100个永远人的人口才能达到巨大的影响阶段。在该人群中,每个行星系统平均包含比1 $ m_ \ oplus $更大的行星。具有巨型行星的系统的比例根本为18%,但只有1.6%的距离为10 au。具有巨人的系统平均包含1.6个这样的行星。在恒星[Fe/H]的陆地和超级地球行星的频率分别为-0.2和0.0,由于缺乏构建块,在较低的[Fe/H]下,在较低的[Fe/H]处受到限制,并且(对于它们而言)在较高[Fe/H]处的较大动态活性行星的有害增长。更大的行星(Neptunian,巨人)的频率与[Fe/H]单调增加。 5-50 $ m_ \ oplus $范围中行星的快速迁移通过多种质量内部行星的存在减少。我们介绍了迄今为止(EXO)行星系统形成和进化的最全面的模拟之一。就理论而言,它们提供了一个框架,以观察测试特定物理过程的理论模型的全球统计后果。这是发展行星形成和进化标准模型的重要组成部分。
We want to understand global observable consequences of different physical processes and initial properties on the demographics of the planetary population. We use the Generation III Bern model to perform planetary population synthesis. We synthesise five populations with each a different initial number of Moon-mass embryos per disc: 1, 10, 20, 50, and 100. The last is our nominal population around 1 Sun-mass stars. The properties of giant planets do not change much as long as there are at least 10 embryos in each system. The study of giants can thus be done with simulations requiring less computational resources. For inner terrestrial planets, only the 100-embryos population is able to attain the giant-impact stage. In that population, each planetary system contains on average 8 planets more massive than 1 $M_\oplus$. The fraction of systems with giants planets at all orbital distances is 18%, but only 1.6% are at > 10 au. Systems with giants contain on average 1.6 such planets. The frequency of terrestrial and super-Earth planets peaks at a stellar [Fe/H] of -0.2 and 0.0, respectively, being limited at lower [Fe/H] by a lack of building blocks, and by (for them) detrimental growth of more massive dynamically active planets at higher [Fe/H]. The frequency of more massive planets (Neptunian, giants) increases monotonically with [Fe/H]. The fast migration of planets in the 5-50 $M_\oplus$ range is reduced by the presence of multiple lower-mass inner planets in the multi-embryos populations. We present one of the most comprehensive simulations of (exo)planetary system formation and evolution to date. For theory, they provide the framework to observationally test the global statistical consequences of theoretical models for specific physical processes. This is a important ingredient towards the development of a standard model of planetary formation and evolution.