论文标题
使用随机森林预测元信息的位错误率
Predicting Bit Error Rate from Meta Information using Random Forests
论文作者
论文摘要
随着基于机器学习的推理的不断增加的功率,元信息(例如,数字信号调制参数,通道条件等)的使用来预测各种信号处理技术的性能。实际兴趣的一个这样的问题是,基于接收信号的元信息选择适当的干扰方法。由于基于启发式表的方法对看不见的病例的预测能力有限,因此我们提出了一种基于随机森林(RF)的建议系统。具体而言,RF用于预测所有缓解方法的比特率(BER),以确定最佳性能的方法。我们发现RF可以高精度预测BER,其重要性因素证明了哪些输入属性最重要。这些BER预测结果还可以使其他功能受益,例如自适应调制,通道传感,光束选择等。
With the increasing power of machine learning-based reasoning, the use of meta-information (e.g., digital signal modulation parameters, channel conditions, etc.) to predict the performance of various signal processing techniques has become feasible. One such problem of practical interest is choosing a proper interference mitigation method based on the meta information of the received signal. Since heuristic table-based methods suffer from limited prediction capability for unseen cases, we propose a recommendation system based on the use of Random Forests (RF). Specifically, RF used to predict the Bit-Error-Rate (BER) of all mitigation approaches so as to determine the approach with the best performance. We found RF can predict BER with high accuracy, and its importance factor demonstrates which input attributes matter most. These BER prediction results can also benefit other functions such as adaptive modulation, channel sensing, beaming selection, etc.