论文标题

Percolation框架揭示了阴谋,暗网和区块链网络中隐私的限制

Percolation framework reveals limits of privacy in Conspiracy, Dark Web, and Blockchain networks

论文作者

Shekhtman, Louis M, Sela, Alon, Havlin, Shlomo

论文摘要

我们考虑网络中个人之间互动的隐私。对于许多网络,虽然节点对外部观察者是匿名的,但个体之间的链接的存在意味着一个节点揭示有关其邻居的识别信息的可能性。此外,虽然帐户的身份可能被隐藏在观察者身上,但通常可以使用两个匿名帐户之间的交互网络。例如,在区块链加密货币中,公开发布两个匿名帐户之间的交易。在这里,我们考虑如果此网络中的一个(或更多)各方被外部身份脱离了姓名。这些受损害的人可能会泄露与他们互动的其他人的信息,然后逐步揭示了越来越多的节点的信息。我们使用渗透框架来分析上述概述的场景,并显示具有在其反派上具有信息的个体的不同可能性,可以识别的帐户的一部分以及从脱词节点到匿名节点的理想数量最小步骤数(对匿名节点的努力所需的努力来使该个体发出象征性所需的量度)。我们进一步开发了一种贪婪的算法,以估计\ emph {实际}基于攻击者可用的嘈杂信息所需的步骤数。我们将框架应用于三个现实世界网络:(1)区块链交易网络,(2)黑暗网络上的交互网络以及(3)政治阴谋网络。我们发现,在所有三个网络中,从一个受损害的个人开始,可以在不到5个步骤的情况下将大部分网络($> 50 $%)的大部分脱离。总的来说,这些结果为寻求在匿名网络中识别参与者的调查人员以及寻求维护其隐私的用户提供了指南。

We consider the privacy of interactions between individuals in a network. For many networks, while nodes are anonymous to outside observers, the existence of a link between individuals implies the possibility of one node revealing identifying information about its neighbor. Moreover, while the identities of the accounts are likely hidden to an observer, the network of interaction between two anonymous accounts is often available. For example, in blockchain cryptocurrencies, transactions between two anonymous accounts are published openly. Here we consider what happens if one (or more) parties in such a network are deanonymized by an outside identity. These compromised individuals could leak information about others with whom they interacted, which could then cascade to more and more nodes' information being revealed. We use a percolation framework to analyze the scenario outlined above and show for different likelihoods of individuals possessing information on their counter-parties, the fraction of accounts that can be identified and the idealized minimum number of steps from a deanonymized node to an anonymous node (a measure of the effort required to deanonymize that individual). We further develop a greedy algorithm to estimate the \emph{actual} number of steps that will be needed to identify a particular node based on the noisy information available to the attacker. We apply our framework to three real-world networks: (1) a blockchain transaction network, (2) a network of interactions on the dark web, and (3) a political conspiracy network. We find that in all three networks, beginning from one compromised individual, it is possible to deanonymize a significant fraction of the network ($>50$%) within less than 5 steps. Overall these results provide guidelines for investigators seeking to identify actors in anonymous networks, as well as for users seeking to maintain their privacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源