论文标题

通用$ P $ - 重力理论中的黑洞

Universal $p$-form black holes in generalized theories of gravity

论文作者

Hervik, Sigbjørn, Ortaggio, Marcello

论文摘要

我们探索在构建$ d $维静态黑洞中可以走多远,耦合到$ p $ - 形式和标量场,然后实际指定了要解决的重力和电动力学理论。同时,我们通过允许与恒定曲率的空间更一般的地平线几何形状来扩大黑洞溶液的空间的程度。我们证明,具有任意各向同性的均质均质基础空间(IHS)的广义Schwarzschill样ANSATZ为这两个问题提供了答案,直到自然地将仪表场适应到时空的几何形状。特别是,IHS-Kähler基本空间使一个人能够在包括非最少耦合在内的大类理论中构建磁性和二元2形式的溶液。我们通过为特定理论(例如$ r^2 $,高斯 - 邦纳特和(一个)Einstein-Horndeski重力(与某些$ p $ form和综合不变的电动力学结合)构建简单的解决方案。

We explore how far one can go in constructing $d$-dimensional static black holes coupled to $p$-form and scalar fields before actually specifying the gravity and electrodynamics theory one wants to solve. At the same time, we study to what extent one can enlarge the space of black hole solutions by allowing for horizon geometries more general than spaces of constant curvature. We prove that a generalized Schwarzschild-like ansatz with an arbitrary isotropy-irreducible homogeneous base space (IHS) provides an answer to both questions, up to naturally adapting the gauge fields to the spacetime geometry. In particular, an IHS-Kähler base space enables one to construct magnetic and dyonic 2-form solutions in a large class of theories, including non-minimally couplings. We exemplify our results by constructing simple solutions to particular theories such as $R^2$, Gauss-Bonnet and (a sector of) Einstein-Horndeski gravity coupled to certain $p$-form and conformally invariant electrodynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源