论文标题
分区Poset复合物和空间中身份的善意衍生物
The partition poset complex and the Goodwillie derivatives of the identity in spaces
论文作者
论文摘要
我们通过cosimimplicial对象的配对在空间中的身份函数的衍生物上产生一个规范的高度同质共同作业结构,从而在Ching首先描述的对象上提供了对此类对象的新的描述。此外,我们还展示了在光谱中派生的衍生的衍生的原语,这是该奥尔格布拉的代数。
We produce a canonical highly homotopy-coherent operad structure on the derivatives of the identity functor in spaces via a pairing of cosimplicial objects, providing a new description of an operad structure on such objects first described by Ching. In addition, we show the derived primitives of a commutative coalgebra in spectra form an algebra over this operad.