论文标题

标志问题周围的复杂路径

Complex Paths Around The Sign Problem

论文作者

Alexandru, Andrei, Basar, Gokce, Bedaque, Paulo F., Warrington, Neill C.

论文摘要

蒙特卡洛对路径积分的评估是接近强耦合系统的少数通用方法之一。它用于物理的所有分支,从QCD/核物理学到相关电子系统。但是,许多非常重要的系统(中子恒星内部密集的物质,令人反感的哈伯德模型从半填充,动力学和非平衡可观察物中都不适合使用蒙特卡洛方法,因为它目前由于所谓的“标志 - 问题”。我们回顾了最近开发的一系列新想法,目的是根据田间空间的复杂化和随附的Picard-Lefshetz理论解决标志问题。该方法的基础的数学思想以及迄今为止开发的算法以及该方法已经被证明成功的非平凡示例进行了描述。划定了未来工作的方向,包括迅速使用机器学习技术的方式。

The Monte Carlo evaluation of path integrals is one of a few general purpose methods to approach strongly coupled systems. It is used in all branches of Physics, from QCD/nuclear physics to the correlated electron systems. However, many systems of great importance (dense matter inside neutron stars, the repulsive Hubbard model away from half-filling, dynamical and non-equilibrium observables) are not amenable to the Monte Carlo method as it currently stands due to the so-called "sign-problem". We review a new set of ideas recently developed to tackle the sign problem based on the complexification of field space and the Picard-Lefshetz theory accompanying it. The mathematical ideas underpinning this approach, as well as the algorithms so far developed, are described together with non-trivial examples where the method has already been proved successful. Directions of future work, including the burgeoning use of machine learning techniques, are delineated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源