论文标题

高电荷的球状大分子对单个离子的竞争性吸附

Competitive sorption of mono- versus di-valent ions by highly charged globular macromolecules

论文作者

Nikam, Rohit, Xu, Xiao, Kanduč, Matej, Dzubiella, Joachim

论文摘要

当高电荷的球状大分子(例如树突状聚电解质或带电的纳米凝胶)浸入生理电解质溶液中时,从溶液中与大分子结合的溶液中的单价和二价柜台以一定比率结合,从而几乎完全将其完全降低。对于生物学介质中带电的大分子,结合单与二 - 价离子的数值比对于所需的功能是决定性的。由于静电(Valency),离子特异性和结合饱和效应的竞争,这种吸附比的理论预测具有挑战性。在这里,我们设计和讨论了一些近似模型,通过扩展和结合既定的静电结合理论,例如Donnan,Langmuir,Manning以及Poisson-Boltzmann接近,以系统地研究单声道和二元柜台的竞争性吸收,以通过较高的和二元的抗衡药,以预测均衡的吸附比。我们将模型与混合价值的盐溶液中球状聚电解质树突硫酸盐(DPGS)的粗粒(隐式 - 溶剂)模拟数据进行比较。 DPG在生物系统中的大分子载体应用中具有很高的潜力,同时构成了高电荷大分子的良好模型系统。最终,我们使用模拟模型来推断和预测静电特征,例如在广泛的DPG世代(尺寸)中,有效电荷是二价离子浓度的函数。

When a highly charged globular macromolecule, such as a dendritic polyelectrolyte or charged nanogel, is immersed into a physiological electrolyte solution, monovalent and divalent counterions from the solution bind to the macromolecule in a certain ratio and thereby almost completely electroneutralize it. For charged macromolecules in biological media, the number ratio of bound mono- versus di-valent ions is decisive for the desired function. A theoretical prediction of such a sorption ratio is challenging because of the competition of electrostatic (valency), ion-specific, and binding saturation effects. Here, we devise and discuss a few approximate models to predict such an equilibrium sorption ratio by extending and combining established electrostatic binding theories such as Donnan, Langmuir, Manning as well as Poisson-Boltzmann approaches, to systematically study the competitive uptake of mono- and di-valent counterions by the macromolecule. We compare and fit our models to coarse-grained (implicit-solvent) computer simulation data of the globular polyelectrolyte dendritic polyglycerol sulfate (dPGS) in salt solutions of mixed valencies. The dPGS has high potential to serve in macromolecular carrier applications in biological systems and at the same time constitutes a good model system for a highly charged macromolecule. We finally use the simulation-informed models to extrapolate and predict electrostatic features such as the effective charge as a function of the divalent ion concentration for a wide range of dPGS generations (sizes).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源