论文标题
学习网络对齐的热量扩散
Learning Heat Diffusion for Network Alignment
论文作者
论文摘要
网络在生命科学中很丰富。出色的挑战包括如何表征网络之间的相似性以及扩展如何整合跨网络的信息。但是,网络对齐仍然是核心算法问题。在这里,我们提出了一种新颖的学习算法,称为基于进化热扩散的网络对齐(EDNA),以应对这一挑战。 Edna使用扩散信号作为计算网络之间节点相似性的代理。将EDNA与流行蛋白质蛋白相互作用网络数据集上的最新算法进行比较,使用四个不同的评估指标,我们实现了(i)最准确的比对,(ii)提高了针对噪声的稳健性,以及(iii)出色的缩放能力。 EDNA算法用途广泛,因为其他可用的网络比对/嵌入可以用作初始基线对齐,然后通过在其顶部运行进化扩散,Edna可以用作包装器。总之,EDNA优于网络对齐的最新方法,从而为网络的大规模比较和集成奠定了基础。
Networks are abundant in the life sciences. Outstanding challenges include how to characterize similarities between networks, and in extension how to integrate information across networks. Yet, network alignment remains a core algorithmic problem. Here, we present a novel learning algorithm called evolutionary heat diffusion-based network alignment (EDNA) to address this challenge. EDNA uses the diffusion signal as a proxy for computing node similarities between networks. Comparing EDNA with state-of-the-art algorithms on a popular protein-protein interaction network dataset, using four different evaluation metrics, we achieve (i) the most accurate alignments, (ii) increased robustness against noise, and (iii) superior scaling capacity. The EDNA algorithm is versatile in that other available network alignments/embeddings can be used as an initial baseline alignment, and then EDNA works as a wrapper around them by running the evolutionary diffusion on top of them. In conclusion, EDNA outperforms state-of-the-art methods for network alignment, thus setting the stage for large-scale comparison and integration of networks.