论文标题
VRUNET:用于预测脆弱道路用户意图的多任务学习模型
VRUNet: Multi-Task Learning Model for Intent Prediction of Vulnerable Road Users
论文作者
论文摘要
任何自动驾驶车辆的核心是高级感知和路径计划。自动驾驶汽车需要了解其他道路使用者的现场和意图,以进行安全运动计划。对于城市用例,认为和预测行人,骑自行车的人,踏板车等的意图非常重要,该意图被归类为脆弱的道路使用者(VRU)。意图是行人活动和长期轨迹的结合,定义了他们的未来运动。在本文中,我们提出了一个多任务学习模型,以预测行人行动,跨越意图并预测他们从视频序列中的未来路径。我们已经培训了自然主义驾驶开源JAAD数据集的模型,该数据集富含行为注释和现实世界情景。实验结果表明,JAAD数据集上的最新性能,以及我们如何使用2D人类姿势特征和场景环境中的共同学习和预测动作和轨迹受益。
Advanced perception and path planning are at the core for any self-driving vehicle. Autonomous vehicles need to understand the scene and intentions of other road users for safe motion planning. For urban use cases it is very important to perceive and predict the intentions of pedestrians, cyclists, scooters, etc., classified as vulnerable road users (VRU). Intent is a combination of pedestrian activities and long term trajectories defining their future motion. In this paper we propose a multi-task learning model to predict pedestrian actions, crossing intent and forecast their future path from video sequences. We have trained the model on naturalistic driving open-source JAAD dataset, which is rich in behavioral annotations and real world scenarios. Experimental results show state-of-the-art performance on JAAD dataset and how we can benefit from jointly learning and predicting actions and trajectories using 2D human pose features and scene context.