论文标题
通过Sybil子图混淆,防止对社交图的积极重新识别攻击
Preventing active re-identification attacks on social graphs via sybil subgraph obfuscation
论文作者
论文摘要
本文介绍了在保护隐私的社会图出版物的背景下进行主动重新识别攻击。主动攻击是对手可以利用伪造帐户(又称Sybil节点)来执行结构模式的攻击,这些模式可用于在匿名图上重新识别其受害者。在本文中,我们提出了对这类攻击的新概率解释。与以前的隐私属性不同,它将保护免受主动对手的保护建模为使受害者节点在所有潜在攻击者方面都无法区分的受害者节点,我们的新配方引入了更完整的视野,在这种情况下,攻击是通过共同防止攻击者检索Sybil nodes和Sybil nodes sybil sybil nodes seprifie sybil nodes sendife re-nodes sendifie and sendies sendien sendien sendien sendien sendien siend sendien sendien node的。在新的公式下,我们表明,在被动攻击的背景下引入的隐私属性$ k $ - 符号对称,为防止主动重新识别攻击提供了充分的条件,利用了任意数量的Sybil节点。此外,我们表明,最初设计的算法K匹配算法是为了有效地执行$ k $ - automormormormism的相关概念,也保证了$ k $ - symmetry。几种合成图集的经验结果证实了我们的方法首次发布匿名的社交图(具有正式的隐私保证),这些图表有效地抵制了文献中最强的主动重新识别攻击,即使它利用了大量的Sybil节点。
This paper addresses active re-identification attacks in the context of privacy-preserving social graph publication. Active attacks are those where the adversary can leverage fake accounts, a.k.a. sybil nodes, to enforce structural patterns that can be used to re-identify their victims on anonymised graphs. In this paper we present a new probabilistic interpretation of this type of attacks. Unlike previous privacy properties, which model the protection from active adversaries as the task of making victim nodes indistinguishable in terms of their fingerprints with respect to all potential attackers, our new formulation introduces a more complete view, where the attack is countered by jointly preventing the attacker from retrieving the set of sybil nodes, and from using these sybil nodes for re-identifying the victims. Under the new formulation, we show that the privacy property $k$-symmetry, introduced in the context of passive attacks, provides a sufficient condition for the protection against active re-identification attacks leveraging an arbitrary number of sybil nodes. Moreover, we show that the algorithm K-Match, originally devised for efficiently enforcing the related notion of $k$-automorphism, also guarantees $k$-symmetry. Empirical results on several collections of synthetic graphs corroborate that our approach allows, for the first time, to publish anonymised social graphs (with formal privacy guarantees) that effectively resist the strongest active re-identification attack reported in the literature, even when it leverages a large number of sybil nodes.