论文标题
多未来商人交易预测
Multi-future Merchant Transaction Prediction
论文作者
论文摘要
商户交易历史记录产生的多元时间序列可以为付款处理公司提供关键的见解。预测商人未来的能力对于欺诈检测和推荐系统至关重要。通常,该问题是为了预测多屈服设置下的一个多元时间序列。但是,考虑到不确定性,现实世界中的应用程序通常需要多个未来的趋势预测,在这种情况下,需要预测多个多元时间序列。这个问题称为多未来预测。在这项工作中,我们结合了两个研究方向,并提出研究这个新问题:多进一步,多骑兵和多元时间序列预测。这个问题至关重要,因为它在金融行业中具有广泛的用例,可以通过提供替代期货来降低用户体验的风险。这个问题也很具有挑战性,因为现在我们不仅需要捕获过去的模式和见解,而且还训练具有强大推论能力来投影多种可能结果的模型。为了解决这个问题,我们提出了一个使用卷积神经网络和简单而有效的编码器结构的新模型,以从多个角度学习时间序列模式。我们在现实世界商人交易数据上使用实验来证明我们提出的模型的有效性。我们还在实验部分中就不同的模型设计选择进行了广泛的讨论。
The multivariate time series generated from merchant transaction history can provide critical insights for payment processing companies. The capability of predicting merchants' future is crucial for fraud detection and recommendation systems. Conventionally, this problem is formulated to predict one multivariate time series under the multi-horizon setting. However, real-world applications often require more than one future trend prediction considering the uncertainties, where more than one multivariate time series needs to be predicted. This problem is called multi-future prediction. In this work, we combine the two research directions and propose to study this new problem: multi-future, multi-horizon and multivariate time series prediction. This problem is crucial as it has broad use cases in the financial industry to reduce the risk while improving user experience by providing alternative futures. This problem is also challenging as now we not only need to capture the patterns and insights from the past but also train a model that has a strong inference capability to project multiple possible outcomes. To solve this problem, we propose a new model using convolutional neural networks and a simple yet effective encoder-decoder structure to learn the time series pattern from multiple perspectives. We use experiments on real-world merchant transaction data to demonstrate the effectiveness of our proposed model. We also provide extensive discussions on different model design choices in our experimental section.