论文标题
量子力学相关性和tsirelson从几何代数绑定
Quantum-Mechanical Correlations and Tsirelson Bound from Geometric Algebra
论文作者
论文摘要
可以使用钟形的 - 霍尔 - 霍尼·霍尔特不平等现象来表明,没有局部隐藏可变性理论可以再现由量子力学(QM)预测的相关性。可以证明,某些QM相关性会导致违反不平等建立的经典结合,而所有相关性(QM和经典)都尊重QM绑定(Tsirelson Bound)。在这里,我们表明这些众所周知的结果至关重要地取决于假设物理幅度的值是标量。结果首先意味着tsirelson结合的起源是几何的,而不是物理的。其次,如果物理幅度的值是向量,则局部隐性变量理论不会与QM相矛盾。
The Bell-Clauser-Horne-Shimony-Holt inequality can be used to show that no local hidden-variable theory can reproduce the correlations predicted by quantum mechanics (QM). It can be proved that certain QM correlations lead to a violation of the classical bound established by the inequality, while all correlations, QM and classical, respect a QM bound (the Tsirelson bound). Here, we show that these well-known results depend crucially on the assumption that the values of physical magnitudes are scalars. The result implies, first, that the origin of the Tsirelson bound is geometrical, not physical; and, second, that a local hidden-variable theory does not contradict QM if the values of physical magnitudes are vectors.