论文标题
真实矩阵的五个满块结构化的奇异值等于它们的上限
Five-Full-Block Structured Singular Values of Real Matrices Equal Their Upper Bounds
论文作者
论文摘要
我们表明,相对于五个完整的复杂不确定性阻止的真实矩阵的结构化奇异值等于其凸的上限。这是通过将平等条件作为可行性的SDP来完成的,并调用了低级别解决方案的结果。为六个不确定性块的情况提供了反例。还使用拟议方法重新审视已知结果。
We show that the structured singular value of a real matrix with respect to five full complex uncertainty blocks equals its convex upper bound. This is done by formulating the equality conditions as a feasibility SDP and invoking a result on the existence of a low-rank solution. A counterexample is given for the case of six uncertainty blocks. Known results are also revisited using the proposed approach.