论文标题
时尚电子商务的价格优化
Price Optimization in Fashion E-commerce
论文作者
论文摘要
随着时尚电子商务行业的快速增长,电子零售商为平台上的所有产品设定最佳价格而变得极具挑战性。通过建立最佳价格点,它们可以最大化平台的总体收入和利润。在本文中,我们提出了一种新颖的机器学习和优化技术,以在单个产品级别找到最佳价格点。它包括三个主要组成部分。首先,我们使用需求预测模型以一定的折扣百分比预测每种产品的第二天需求。下一步,我们使用需求价格弹性的概念来通过改变折扣百分比来获得多重需求值。因此,我们为每种产品获得多个价格需求对,我们必须为实时平台选择其中之一。通常,时尚电子商务拥有数百万个产品,因此可能会有很多排列。每个排列将为所有产品分配一个唯一的价格点,该价格将汇总到唯一的收入编号。为了选择获得最大收入的最佳排列,使用了线性编程优化技术。我们已经在实时生产环境中部署了上述方法,并进行了几项AB测试。根据AB测试结果,我们的模型将收入提高了1%,毛利率提高了0.81%。
With the rapid growth in the fashion e-commerce industry, it is becoming extremely challenging for the E-tailers to set an optimal price point for all the products on the platform. By establishing an optimal price point, they can maximize overall revenue and profit for the platform. In this paper, we propose a novel machine learning and optimization technique to find the optimal price point at an individual product level. It comprises three major components. Firstly, we use a demand prediction model to predict the next day demand for each product at a certain discount percentage. Next step, we use the concept of price elasticity of demand to get the multiple demand values by varying the discount percentage. Thus we obtain multiple price demand pairs for each product and we have to choose one of them for the live platform. Typically fashion e-commerce has millions of products, so there can be many permutations. Each permutation will assign a unique price point for all the products, which will sum up to a unique revenue number. To choose the best permutation which gives maximum revenue, a linear programming optimization technique is used. We have deployed the above methods in the live production environment and conducted several AB tests. According to the AB test result, our model is improving the revenue by 1 percent and gross margin by 0.81 percent.