论文标题
在存在多个替代假设的情况下,用于自适应雷达检测的统一框架
A Unifying Framework for Adaptive Radar Detection in the Presence of Multiple Alternative Hypotheses
论文作者
论文摘要
在本文中,我们开发了一个新的优雅框架,该框架依靠Kullback-Leibler信息标准来解决一阶段自适应检测体系结构的设计,以解决多个假设测试问题。具体而言,在设计阶段,我们假设几种替代假设可能有效,并且仅存在一个无效的假设。然后,从已知所有参数并继续进行的情况开始,直到需要相对于整个参数集的适应性,我们提出了针对多种替代假设的决策方案,这些假设是由压缩日志 - 易期比率之间的总和基于可用数据和不知名参数数量的惩罚性计算的惩罚术语。后者是从真实和候选概率密度函数之间的Kullback-Leibler差异的合适近似值中升起。有趣的是,在特定的约束下,提议的决策计划可以通过不变性原则共享恒定的错误警报率属性。最后,与两阶段竞争者相比,在雷达检测的背景下,在应用程序中,通过应用程序显示了拟议框架的有效性。该分析强调,在提出的框架内设计的体系结构代表了一种有效的手段来处理检测问题,其中某些参数的不确定性导致了多个替代假设。
In this paper, we develop a new elegant framework relying on the Kullback-Leibler Information Criterion to address the design of one-stage adaptive detection architectures for multiple hypothesis testing problems. Specifically, at the design stage, we assume that several alternative hypotheses may be in force and that only one null hypothesis exists. Then, starting from the case where all the parameters are known and proceeding until the case where the adaptivity with respect to the entire parameter set is required, we come up with decision schemes for multiple alternative hypotheses consisting of the sum between the compressed log-likelihood ratio based upon the available data and a penalty term accounting for the number of unknown parameters. The latter rises from suitable approximations of the Kullback-Leibler Divergence between the true and a candidate probability density function. Interestingly, under specific constraints, the proposed decision schemes can share the constant false alarm rate property by virtue of the Invariance Principle. Finally, we show the effectiveness of the proposed framework through the application to examples of practical value in the context of radar detection also in comparison with two-stage competitors. This analysis highlights that the architectures devised within the proposed framework represent an effective means to deal with detection problems where the uncertainty on some parameters leads to multiple alternative hypotheses.