论文标题

深度展开基础追求:通过数据驱动的测量矩阵改善稀疏通道重建

Deep Unfolding Basis Pursuit: Improving Sparse Channel Reconstruction via Data-Driven Measurement Matrices

论文作者

Wu, Pengxia, Cheng, Julian

论文摘要

对于以频划分双面模式运行的大量多输入多输出(MIMO)系统,下行链路通道状态信息(CSI)的采集将产生大开销。当使用角域中的通道稀疏性,当采用稀疏通道估计技术时,该开销大大降低。实现稀疏通道估计方法时,与试点矩阵有关的测量矩阵对于通道估计性能至关重要。现有的稀疏通道估计方案广泛采用随机测量矩阵,这些矩阵因其次优重建性能而受到批评。本文提出了新的数据驱动解决方案来设计测量矩阵。基于模型的自动编码器可以通过展开经典的追求算法来定制以优化测量矩阵。获得的数据驱动的测量矩阵应用于现有的稀疏重建算法,从而导致灵活的混合数据驱动的实现,以实现稀疏通道估计。数值结果表明,与现有的随机矩阵相比,提出的数据驱动的测量矩阵可以实现更准确的重建,并且使用更少的测量结果,从而导致CSI获取的可实现率更高。此外,与现有的纯学习稀疏重建方法相比,提出的混合数据驱动的方案(使用新型数据驱动的测量矩阵都具有传统的稀疏重建算法,可以实现更高的重建精度。

For massive multiple-input multiple-output (MIMO) systems operating in frequency-division duplex mode, downlink channel state information (CSI) acquisition will incur large overhead. This overhead is substantially reduced when sparse channel estimation techniques are employed, owing to the channel sparsity in the angular domain. When a sparse channel estimation method is implemented, the measurement matrix, which is related to the pilot matrix, is essential to the channel estimation performance. Existing sparse channel estimation schemes widely adopt random measurement matrices, which have been criticized for their suboptimal reconstruction performance. This paper proposes novel data-driven solutions to design the measurement matrix. Model-based autoencoders are customized to optimize the measurement matrix by unfolding the classical basis pursuit algorithm. The obtained data-driven measurement matrices are applied to existing sparse reconstruction algorithms, leading to flexible hybrid data-driven implementations for sparse channel estimation. Numerical results show that the proposed data-driven measurement matrices can achieve more accurate reconstructions and use fewer measurements than the existing random matrices, thereby leading to a higher achievable rate for CSI acquisition. Moreover, compared with existing pure deep learning-based sparse reconstruction methods, the proposed hybrid data-driven scheme, which uses the novel data-driven measurement matrices with conventional sparse reconstruction algorithms, can achieve higher reconstruction accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源