论文标题

可变长度压缩的三阶渐近学允许错误

Third-Order Asymptotics of Variable-Length Compression Allowing Errors

论文作者

Sakai, Yuta, Yavas, Recep Can, Tan, Vincent Y. F.

论文摘要

这项研究研究了不施加无前缀约束的可变长度压缩的基本限制(即研究一对一的代码),并允许使用不变的误差概率。在一定程度上是由于可变长度和固定长度压缩问题之间的关键关系,我们的分析需要仔细而精致的分析,对固定长度压缩的基本限制在允许误差概率允许在区块长的零或一个多面角接近零或一个多态的环境中。为了获得改进,我们采用了中等偏差和巨大偏差的工具。最后,我们为可变的长度压缩问题提供了三阶渐近学,并提供了不变误差概率。我们表明,与其他几个信息理论问题不同,其中三阶渐近学是为了感兴趣的问题,而第三阶术语取决于允许的误差概率。

This study investigates the fundamental limits of variable-length compression in which prefix-free constraints are not imposed (i.e., one-to-one codes are studied) and non-vanishing error probabilities are permitted. Due in part to a crucial relation between the variable-length and fixed-length compression problems, our analysis requires a careful and refined analysis of the fundamental limits of fixed-length compression in the setting where the error probabilities are allowed to approach either zero or one polynomially in the blocklength. To obtain the refinements, we employ tools from moderate deviations and strong large deviations. Finally, we provide the third-order asymptotics for the problem of variable-length compression with non-vanishing error probabilities. We show that unlike several other information-theoretic problems in which the third-order asymptotics are known, for the problem of interest here, the third-order term depends on the permissible error probability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源