论文标题

Lorck:可学习的对象卷积内核

LORCK: Learnable Object-Resembling Convolution Kernels

论文作者

Lazareva, Elizaveta, Rogov, Oleg, Shegai, Olga, Larionov, Denis, Dylov, Dmitry V.

论文摘要

由于其复杂的几何形状,软组织中的模糊强度梯度以及数据注释常规的繁琐的手动过程,因此某些空心器官(例如膀胱)的分割特别难以自动化。然而,在这种器官的放射学图像中,墙壁和癌症区域的准确定位是肿瘤学的重要一步。为了解决这个问题,我们提出了一种新的空心内核,它们学会“模仿”分段器官的轮廓,从而有效地复制其形状和结构复杂性。我们使用所提出的内核训练一系列类似U-NET的神经网络,并在各种时空卷积场景中展示了该想法的优越性。具体而言,扩张的空心 - 内核体系结构的表现优于最先进的空间分割模型,而添加时间块的时间块则是Bi-lstM,为膀胱细分挑战建立了新的多级基线。我们基于空心内核的时空模型分别达到膀胱内壁,外壁和肿瘤区域的平均骰子得分为0.936、0.736和0.712。结果铺平了通往其他特定领域的深度学习应用,其中分割对象的形状可用于形成适当的卷积内核来增强分割结果。

Segmentation of certain hollow organs, such as the bladder, is especially hard to automate due to their complex geometry, vague intensity gradients in the soft tissues, and a tedious manual process of the data annotation routine. Yet, accurate localization of the walls and the cancer regions in the radiologic images of such organs is an essential step in oncology. To address this issue, we propose a new class of hollow kernels that learn to 'mimic' the contours of the segmented organ, effectively replicating its shape and structural complexity. We train a series of the U-Net-like neural networks using the proposed kernels and demonstrate the superiority of the idea in various spatio-temporal convolution scenarios. Specifically, the dilated hollow-kernel architecture outperforms state-of-the-art spatial segmentation models, whereas the addition of temporal blocks with, e.g., Bi-LSTM, establishes a new multi-class baseline for the bladder segmentation challenge. Our spatio-temporal model based on the hollow kernels reaches the mean dice scores of 0.936, 0.736, and 0.712 for the bladder's inner wall, the outer wall, and the tumor regions, respectively. The results pave the way towards other domain-specific deep learning applications where the shape of the segmented object could be used to form a proper convolution kernel for boosting the segmentation outcome.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源