论文标题

无序和准膜系统中的超导接近效应和顺序参数波动

Superconducting proximity effect and order parameter fluctuations in disordered and quasiperiodic systems

论文作者

Rai, Gautam, Haas, Stephan, Jagannathan, Anuradha

论文摘要

我们研究了无均匀系统中的超导接近效应,在这种系统中,无序或准晶体正常状态线连接到BCS超导体。我们自言自语地计算出三种情况的真实空间Bogoliubov-de Gennes框架中的局部超导顺序参数,即,当状态i)扩展时,ii)ii)本地化或iiii)关键。结果表明,随着一个人远离正常责任的界面,超导顺序参数的空间衰减是在案例i)和iii)中的功率定律,在案例II中伸展了指数。在准晶体情况下,我们观察到接近诱导的超导顺序参数的空间调制中的自相似性。为了表征这些系统中大型的波动,我们研究了正常区域中心的顺序参数的分布函数。这些是变量(情况I)或其对数(案例II和III)的高斯函数。我们提供参数以解释分布的特征及其对三种情况中每种情况的系统大小的规模。

We study the superconducting proximity effect in inhomogeneous systems in which a disordered or quasicrystalline normal-state wire is connected to a BCS superconductor. We self-consistently compute the local superconducting order parameters in the real space Bogoliubov-de Gennes framework for three cases, namely, when states are i) extended, ii) localized or iii) critical. The results show that the spatial decay of the superconducting order parameter as one moves away from the normal-superconductor interface is power law in cases i) and iii), stretched exponential in case ii). In the quasicrystalline case, we observe self-similarity in the spatial modulation of the proximity-induced superconducting order parameter. To characterize fluctuations, which are large in these systems, we study the distribution functions of the order parameter at the center of the normal region. These are Gaussian functions of the variable (case i) or of its logarithm (cases ii and iii). We give arguments to explain the characteristics of the distributions and their scaling with system size for each of the three cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源