论文标题

比较非线性映射的振动结构降低阶层的比较:具有模态衍生物的正常形式理论和二次歧管方法

Comparison of nonlinear mappings for reduced-order modelling of vibrating structures: normal form theory and quadratic manifold method with modal derivatives

论文作者

Vizzaccaro, Alessandra, Salles, Loïc, Touzé, Cyril

论文摘要

该贡献的目的是比较最近提出的两种方法,以构建有效的几何非线性结构的降低阶模型。第一种方法依赖于正常形式的理论,该理论允许人们在基于相位空间的基于不变的跨度中获得坐标的非线性变化。第二种方法是模态衍生物(MD)方法,更具体地说是定义的二次歧管,以得出坐标的二阶非线性变化。两种方法都有一个共同的观点,愿意引入非线性映射以更好地定义降低的订单模型,该模型可以更正确地考虑到非线性恢复力。但是,计算方法是不同的,二次歧管方法没有嵌入其定义中的不变属性。研究了模态衍生物和静态模态衍生物,并强调了它们在二次非线性治疗中的独特特征。假设慢/快速分解可以理解三种方法倾向于共享等效属性。尽管它们对具有特定非线性形状的平坦对称结构进行了适当的估计,并且在弯曲和平面模式之间进行了明显的缓慢/快速分解,但对二次非线性的处理使预测在弯曲结构(例如拱门和贝壳)的情况下有所不同。在更一般的情况下,正常形式的方法似乎是可取的,因为它允许正确预测许多重要的非线性特征,例如,无论从slave和主坐标之间的关系如何,都可以使用硬化/软化行为。

The objective of this contribution is to compare two methods proposed recently in order to build efficient reduced-order models for geometrically nonlinear structures. The first method relies on the normal form theory that allows one to obtain a nonlinear change of coordinates for expressing the reduced-order dynamics in an invariant-based span of the phase space. The second method is the modal derivative (MD) approach, and more specifically the quadratic manifold defined in order to derive a second-order nonlinear change of coordinates. Both methods share a common point of view, willing to introduce a nonlinear mapping to better define a reduced order model that could take more properly into account the nonlinear restoring forces. However the calculation methods are different and the quadratic manifold approach has not the invariance property embedded in its definition. Modal derivatives and static modal derivatives are investigated, and their distinctive features in the treatment of the quadratic nonlinearity is underlined. Assuming a slow/fast decomposition allows understanding how the three methods tend to share equivalent properties. While they give proper estimations for flat symmetric structures having a specific shape of nonlinearities and a clear slow/fast decomposition between flexural and in-plane modes, the treatment of the quadratic nonlinearity makes the predictions different in the case of curved structures such as arches and shells. In the more general case, normal form approach appears preferable since it allows correct predictions of a number of important nonlinear features, including for example the hardening/softening behaviour, whatever the relationships between slave and master coordinates are.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源