论文标题

支持推断推断的学习表征

Learning Representations that Support Extrapolation

论文作者

Webb, Taylor W., Dulberg, Zachary, Frankland, Steven M., Petrov, Alexander A., O'Reilly, Randall C., Cohen, Jonathan D.

论文摘要

推断 - 做出超越自己经验范围的推论的能力 - 是人类智力的标志。相比之下,当代神经网络算法所表现出的概括在很大程度上仅限于其培训语料库中数据点之间的插值。在本文中,我们考虑了支持推断推断的学习表征的挑战。我们引入了一个新颖的视觉类比基准,该基准允许对外推的分级评估,这是距训练数据定义的凸域距离的函数。我们还介绍了一种简单的技术,即时间上下文的归一化,该技术鼓励强调对象之间关系的表示形式。我们发现,这项技术可以显着提高推断的能力,超过许多竞争技术。

Extrapolation -- the ability to make inferences that go beyond the scope of one's experiences -- is a hallmark of human intelligence. By contrast, the generalization exhibited by contemporary neural network algorithms is largely limited to interpolation between data points in their training corpora. In this paper, we consider the challenge of learning representations that support extrapolation. We introduce a novel visual analogy benchmark that allows the graded evaluation of extrapolation as a function of distance from the convex domain defined by the training data. We also introduce a simple technique, temporal context normalization, that encourages representations that emphasize the relations between objects. We find that this technique enables a significant improvement in the ability to extrapolate, considerably outperforming a number of competitive techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源