论文标题

从蓝牙低能RSSI中推断出近距离与无味的kalman smoorth

Inferring proximity from Bluetooth Low Energy RSSI with Unscented Kalman Smoothers

论文作者

Lovett, Tom, Briers, Mark, Charalambides, Marcos, Jersakova, Radka, Lomax, James, Holmes, Chris

论文摘要

COVID-19大流行导致了多种用于管理国际人口感染暴发的方法。一个例子是手机应用程序,它试图通过自动推断出感染风险的两个关键组成部分来提醒感染的个人及其联系人:接近可能被感染的个人以及接近的持续时间。前一个组件(接近)依赖于蓝牙低能(BLE)作为距离传感器接收信号强度指示器(RSSI),这已被证明是有问题的。尤其是由于不同的设备类型,设备上的位置,设备方向,本地环境以及与射频传播相关的一般噪声引起的不可预测的变化。在本文中,我们提出了一种方法,该方法在给定RSSI值的序列给定距离上的后验概率。使用单维无源的卡尔曼(Kalman)进行非线性状态空间建模(UKS),我们概述了几个高斯过程观察变换,包括:一种直接捕获变异源的生成模型;以及一个判别模型,该模型使用距离和感染风险作为优化目标函数从训练数据中学习合适的观察功能。我们的结果表明,在现实世界中数据集中,可以在$ \ Mathcal {O}(n)$时间中实现良好的风险预测,而UKS的表现优于从相同的培训数据中学到的更多传统分类方法。

The Covid-19 pandemic has resulted in a variety of approaches for managing infection outbreaks in international populations. One example is mobile phone applications, which attempt to alert infected individuals and their contacts by automatically inferring two key components of infection risk: the proximity to an individual who may be infected, and the duration of proximity. The former component, proximity, relies on Bluetooth Low Energy (BLE) Received Signal Strength Indicator(RSSI) as a distance sensor, and this has been shown to be problematic; not least because of unpredictable variations caused by different device types, device location on-body, device orientation, the local environment and the general noise associated with radio frequency propagation. In this paper, we present an approach that infers posterior probabilities over distance given sequences of RSSI values. Using a single-dimensional Unscented Kalman Smoother (UKS) for non-linear state space modelling, we outline several Gaussian process observation transforms, including: a generative model that directly captures sources of variation; and a discriminative model that learns a suitable observation function from training data using both distance and infection risk as optimisation objective functions. Our results show that good risk prediction can be achieved in $\mathcal{O}(n)$ time on real-world data sets, with the UKS outperforming more traditional classification methods learned from the same training data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源