论文标题

关于Web搜索自动解决方案的社会和技术挑战

On the Social and Technical Challenges of Web Search Autosuggestion Moderation

论文作者

Hazen, Timothy J., Olteanu, Alexandra, Kazai, Gabriella, Diaz, Fernando, Golebiewski, Michael

论文摘要

过去的研究表明,用户受益于支持他们在写作和探索任务中的系统。 Web搜索引擎的AutoSuggestion功能就是这样一个系统的一个示例:它通过在输入时提供建议列表来帮助用户制定其查询。通常,通过在搜索日志和文档表示的语料库中训练的机器学习(ML)系统生成自动驾驶。这种自动化方法可能会易于解决问题,这些问题会导致有偏见,种族主义,性别歧视或其他方式不适当的建议。尽管当前的搜索引擎已经越来越精通抑制此类问题的建议,但仍然存在持久的问题。在本文中,我们反思了过去的努力,以及为什么某些问题仍然涉及沿原型管道探索的解决方案来识别,检测和解决有问题的自动驾驶性的解决方案。为了展示它们的复杂性,我们讨论了有问题的建议,管道中的困难问题的几个维度,以及为什么我们的讨论适用于实现类似文本建议功能的Web搜索以外的越来越多的应用程序。通过概述持续的社会和技术挑战,在调节网络搜索建议时,我们提供了一个新的行动呼吁。

Past research shows that users benefit from systems that support them in their writing and exploration tasks. The autosuggestion feature of Web search engines is an example of such a system: It helps users in formulating their queries by offering a list of suggestions as they type. Autosuggestions are typically generated by machine learning (ML) systems trained on a corpus of search logs and document representations. Such automated methods can become prone to issues that result in problematic suggestions that are biased, racist, sexist or in other ways inappropriate. While current search engines have become increasingly proficient at suppressing such problematic suggestions, there are still persistent issues that remain. In this paper, we reflect on past efforts and on why certain issues still linger by covering explored solutions along a prototypical pipeline for identifying, detecting, and addressing problematic autosuggestions. To showcase their complexity, we discuss several dimensions of problematic suggestions, difficult issues along the pipeline, and why our discussion applies to the increasing number of applications beyond web search that implement similar textual suggestion features. By outlining persistent social and technical challenges in moderating web search suggestions, we provide a renewed call for action.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源