论文标题
Dulmage-Mendelsohn Percolation:最大包装二聚体模型的几何形状和拓扑保护的零模式
Dulmage-Mendelsohn percolation: Geometry of maximally-packed dimer models and topologically-protected zero modes on site-diluted bipartite lattices
论文作者
论文摘要
{\ em最大匹配}的经典组合构建体探测区域有局部sublattice bipalance的区域稀释的两部分晶格的随机几何形状。我们证明,这些区域容纳了晶格的任何最大匹配的单体,它控制了该晶格上零能量量子粒子跳的定位特性。 Dulmage和Mendelsohn的结构理论为我们提供了一种识别此类区域的完整和非重叠集的方法。这激发了我们对两个和三个维度的位置稀释两分晶格的dulmage-mendelsohn分解的大规模计算研究。我们的计算发现了与局部sublattice不平衡的此类单体携带区域的端到端连通性相关的有趣的普遍性类别,我们将其视为{\ em dulmage-mendelsohn percolation}。我们的结果意味着在相关的最大包装二聚体模型的经典统计力学中存在单体渗透过渡,并且存在与相应量子二聚体模型的任意多体征态的区域法纠缠熵的相位。他们还对主要零ana模式的两部分网络的集体零能量兴奋的性质具有显着意义由少量非磁性杂质稀释的两分量量子抗铁磁铁。
The classic combinatorial construct of {\em maximum matchings} probes the random geometry of regions with local sublattice imbalance in a site-diluted bipartite lattice. We demonstrate that these regions, which host the monomers of any maximum matching of the lattice, control the localization properties of a zero-energy quantum particle hopping on this lattice. The structure theory of Dulmage and Mendelsohn provides us a way of identifying a complete and non-overlapping set of such regions. This motivates our large-scale computational study of the Dulmage-Mendelsohn decomposition of site-diluted bipartite lattices in two and three dimensions. Our computations uncover an interesting universality class of percolation associated with the end-to-end connectivity of such monomer-carrying regions with local sublattice imbalance, which we dub {\em Dulmage-Mendelsohn percolation}. Our results imply the existence of a monomer percolation transition in the classical statistical mechanics of the associated maximally-packed dimer model and the existence of a phase with area-law entanglement entropy of arbitrary many-body eigenstates of the corresponding quantum dimer model. They also have striking implications for the nature of collective zero-energy Majorana fermion excitations of bipartite networks of Majorana modes localized on sites of diluted lattices, for the character of topologically-protected zero-energy wavefunctions of the bipartite random hopping problem on such lattices, and thence for the corresponding quantum percolation problem, and for the nature of low-energy magnetic excitations in bipartite quantum antiferromagnets diluted by a small density of nonmagnetic impurities.