论文标题
注意还是记忆?神经解释的代理在时空中
Attention or memory? Neurointerpretable agents in space and time
论文作者
论文摘要
在神经科学中,已表明注意力与增强学习(RL)过程在双向相互作用。人们认为这种交互作用支持降低任务表示形式,从而将计算限制为相关功能。但是,目前尚不清楚这些特性是否可以转化为人工代理,尤其是在动态环境中的实际算法优势。我们设计了一个模型,该模型结合了一种自我发挥的机制,该机制在语义功能空间中实现任务状态表示形式,并在Atari游戏中进行测试。为了评估代理的选择性属性,我们在观察值中添加了大量的任务 - 近关系功能。与神经科学的预测一致,与基准模型相比,自我注意力会导致对噪声的鲁棒性提高。引人注目的是,这种自我发挥的机制足够一般,因此可以自然扩展以实现短暂的工作记忆,能够解决部分可观察到的迷宫任务。最后,我们强调了参加刺激的预测质量。因为我们使用语义观察,所以我们不仅可以揭示代理商选择以基于决策为基础的哪个特征,而且还可以选择如何从更简单的特征中编译出更复杂的关系特征。这些结果正式说明了在深度RL中注意的好处,并为自我发挥机制的解释性提供了证据。
In neuroscience, attention has been shown to bidirectionally interact with reinforcement learning (RL) processes. This interaction is thought to support dimensionality reduction of task representations, restricting computations to relevant features. However, it remains unclear whether these properties can translate into real algorithmic advantages for artificial agents, especially in dynamic environments. We design a model incorporating a self-attention mechanism that implements task-state representations in semantic feature-space, and test it on a battery of Atari games. To evaluate the agent's selective properties, we add a large volume of task-irrelevant features to observations. In line with neuroscience predictions, self-attention leads to increased robustness to noise compared to benchmark models. Strikingly, this self-attention mechanism is general enough, such that it can be naturally extended to implement a transient working-memory, able to solve a partially observable maze task. Lastly, we highlight the predictive quality of attended stimuli. Because we use semantic observations, we can uncover not only which features the agent elects to base decisions on, but also how it chooses to compile more complex, relational features from simpler ones. These results formally illustrate the benefits of attention in deep RL and provide evidence for the interpretability of self-attention mechanisms.