论文标题
真实时间网络的可预测性
Predictability of real temporal networks
论文作者
论文摘要
大多数真实网络中的链接通常会随着时间而变化。链接的这种时间性编码节点之间相互作用的顺序和因果关系,并对网络动态和功能产生深远的影响。经验证据表明,许多现实世界网络中链接的时间性质不是随机的。但是,在考虑拓扑和时间链接模式之间的纠缠时,预测时间链接模式是一项挑战。在这里,我们提出了一个基于组合拓扑时端规律性的基于熵率的框架,以量化任何时间网络的可预测性。我们将我们的框架应用于各种模型网络,表明它确实捕获了内在的拓扑周期性规律性,而先前的方法仅考虑时间方面。我们还将我们的框架应用于不同类型的18个真实网络,并确定其可预测性。有趣的是,我们发现,对于大多数真实的时间网络,尽管维度的增加带来了更大的可预测性复杂性,但合并的拓扑周期性可预测性高于时间可预测性。我们的结果表明,必须纳入网络的时间和拓扑方面,以改善动态过程的预测。
Links in most real networks often change over time. Such temporality of links encodes the ordering and causality of interactions between nodes and has a profound effect on network dynamics and function. Empirical evidences have shown that the temporal nature of links in many real-world networks is not random. Nonetheless, it is challenging to predict temporal link patterns while considering the entanglement between topological and temporal link patterns. Here we propose an entropy-rate based framework, based on combined topological-temporal regularities, for quantifying the predictability of any temporal network. We apply our framework on various model networks, demonstrating that it indeed captures the intrinsic topological-temporal regularities whereas previous methods considered only temporal aspects. We also apply our framework on 18 real networks of different types and determine their predictability. Interestingly, we find that for most real temporal networks, despite the greater complexity of predictability brought by the increase in dimension the combined topological-temporal predictability is higher than the temporal predictability. Our results demonstrate the necessity of incorporating both temporal and topological aspects of networks in order to improve predictions of dynamical processes.