论文标题
边界熵光谱作为有限的子公司
Boundary entropy spectra as finite subsums
论文作者
论文摘要
在本文中,我们提供了$τ$ -Boundaries $ \ Mathbb {z} [\ frac {\ frac {1} {p_1},\ ldots,\ frac {1} {p_ {p_ {l}}} {p_1] \ rtimes \ cd_1 { p_ {l}^{n_ {l}} \,:\,n_i \ in \ mathbb {z} \} $,通过选择适当的随机步行$τ$。我们表明,对于任何给定的正数有限序列,边界熵光谱可以实现为子集。
In this paper we provide a concrete construction of Furstenberg entropy values of $τ$-boundaries of the group $\mathbb{Z}[\frac{1}{p_1},\ldots,\frac{1}{p_{l}}]\rtimes \{p_1^{n_1}\cdots p_{l}^{n_{l}} \, : \, n_i\in\mathbb{Z}\}$ by choosing an appropriate random walk $τ$. We show that the boundary entropy spectrum can be realized as the subsum-set for any given finite sequence of positive numbers.